The term advanced material is a broad classification for materials with advantageous or novel properties. Their development is often accompanied with monumental challenges including high costs. Using existing experimental strategies which utilize restricted randomization combined with machine learning may be useful to accelerate development while simultaneously reducing the cost and experimental effort required to develop materials of this group of materials.
The advanced materials that are the focus of this dissertation are auxetic foams and carbon nanotubes. Auxetic materials are a class of materials which possess a negative Poisson’s ratio with many potential functional and structural applications. One of the most commonly studied auxetic materials is auxetic polyurethane foams due to its low cost. Auxetic polyurethane foam materials have been heavily explored, but many challenges remain. These include wide variation in final properties, different foam chemistries, and a variety of different manufacturing processes. Utilizing Split-plot type designs, which incorporate restricted randomization, to investigate the effects of processing parameters, foam chemistry, and other attributes associated with the final Poisson’s ratio could help to accelerate development and stabilization of the properties of auxetic foams and other advanced materials. In this dissertation a split-plot design was used to investigate the effects of several processing parameters and their interactions. A mathematical model was fit and validated using additional experimental data. Lastly, the benefits of using split-plot designs are illustrated using previously conducted experimental studies in the literature.
Carbon nanotubes (CNT), another advanced material, have many potential applications including lightweight composites. Current research is focused on developing composites using carbon nanotube assemblies which are compatible with traditional composite manufacturing techniques. These assemblies, which are commonly synthesized using chemical vapor deposition techniques and undergo extensive post-processing, typically contain impurities which inhibit the final properties of the assembly. Trapped in the densely packed structure of the CNT assembly, these impurities are difficult to remove using existing CNT purification techniques. As an alternative to existing purification techniques, supercritical water purification is investigated for impurity removal. Above the critical point water has unique properties that allow it to infiltrate dense networks and serve multiple roles in the purification process. The effects of the supercritical water treatment on the yarn impurity content and micro- and macro-structure are investigated.
The final mechanical properties of fiber composites are affected by both the strength of the fiber and the strength of the interface between the fiber and the resin matrix they are embedded in. Over the last decade improvements in CNT assembly manufacturing have led to significant improvements in their strength. However, very few improvements in the interface properties of CNT assemblies have been made.  A previous study conducted at the National Institute of Aerospace and NASA, which investigated functionalization techniques to improve the interface strength of CNT assembly composites, was able to produce significant improvements in the interface strength by fully wetting the assembly with polymer prior to densification rather than after. However, this method resulted in a lower specific strength than the commercially available assembly derived from the same material. As a result, current efforts are focused on finding a technique to fully-wet the densified material. Preliminary functionalization trials conducted during the purification study suggested that purification and functionalization have a combined effect on the CNT assembly. To investigate this hypothesis, a multi-stage experimental design is constructed and executed to investigate the processing effects using minimal material. Several new promising pull-out morphologies not previously shown in the literature are observed. This data was then used to train a few machine learning models to predict the experimental outcome of a set of processing conditions. This combination of experimental design and machine learning can be used to accelerate materials development and reduce experimental effort.
