Assistant Professor
Office
IRCB 3040E
Educational History
Ph.D., Biomedical Engineering, University of Texas at Austin, 2022
B.S., Chemical Engineering, University of Oklahoma, 2018
Research Interests
Biomedical Hydrogel Design
Physics of Swollen Polymer Networks
Cell-Extracellular Matrix Interactions
Hematopoietic Stem Cell Culture
Breast Cancer Dormancy
Publications
Richbourg, N., Wechsler, M., Rodriguez Cruz, J., Peppas, N. (2024) Model-based modular hydrogel design. Nat Rev Bioeng. https://doi.org/10.1038/s44222-024-00167-4
Richbourg, N., Irakoze, N., Kim, H., Peyton, S. (2024) Outlook and Opportunities for Engineered Environments of Breast Cancer Dormancy. Sci Adv. https://doi.org/10.1126/sciadv.adl0165
Richbourg, N., Peppas, N. (2023) Structurally decoupled stiffness and solute transport in multi-arm poly(ethylene glycol) hydrogels. Biomaterials. 301, 122272, https://doi.org/10.1016/j.biomaterials.2023.122272
Kundu, A., Dougan, C., Mahmoud, S., Kilic, A., Panagiotou, A., Irakoze, N., Richbourg, N., Peyton, S. (2023) Tenascin-C activation of lung fibroblasts in a 3D synthetic lung extracellular matrix mimic. Adv Mater. 2301493, https://doi.org/10.1002/adma.202301493
Richbourg, N., Peppas, N. (2023) Solute diffusion and partitioning in multi-arm poly(ethylene glycol) hydrogels. J Mater Chem B. 11, 377-388, https://doi.org/10.1039/D2TB02004A
Richbourg, N., Rausch, M., Peppas, N. (2022) Cross-evaluation of stiffness measurement methods for hydrogels. Polymer. 258, 125316, https://doi.org/10.1016/j.polymer.2022.125316
Richbourg, N., Peppas, N. (2021) High Throughput FRAP Analysis of Solute Diffusion in Hydrogels. Macromolecules. 54 (22), 10477-10486, https://doi.org/10.1021/acs.macromol.1c01752
Richbourg, N., Ravikumar, A., Peppas, N. (2021) Solute Transport Dependence on 3D Geometry of Hydrogel Networks. Macromol Chem Phys. 2100138, https://doi.org/10.1002/macp.202100138
Richbourg, N., Wancura, M., Gilchrist, A., Toubbeh, S., Harley, B., Cosgriff-Hernandez, E., Peppas, N. (2021) Precise control of synthetic hydrogel network structure via linear, independent synthesis-swelling relationships. Sci Adv. 7 (7), https://doi.org/10.1126/sciadv.abe3245
Richbourg, N., & Peppas, N. (2020). The Swollen Polymer Network Hypothesis: Quantitative Models of Hydrogel Swelling, Stiffness, and Solute Transport. Prog Polym Sci. 105, 101243. https://doi.org/10.1016/j.progpolymsci.2020.101243
Richbourg, N., Peppas, N., & Sikavitsas, V. (2019). Tuning the Biomimetic Behavior of Scaffolds for Regenerative Medicine Through Surface Modifications. J Tissue Eng Regen Med. 13 (8), 1275-1293. https://doi.org/10.1002/term.2859
Karami, D., Richbourg, N., & Sikavitsas, V. (2019). Dynamic In Vitro Models for Tumor Tissue Engineering. Cancer Letters. 449, 178-185. https://doi.org/10.1016/j.canlet.2019.01.043
